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Abstract. Characterizations of global optimality are given for general difference convex (DC) opti- 
mization problems involving convex inequality constraints. These results are obtained in terms of 
E-subdifferentials of the objective and constraint functions and do not require any regularity condi- 
tion. An extension of Farkas’ lemma is obtained for inequality systems involving convex functions 
and is used to establish necessary and sufficient optimality conditions. As applications, optimality 
conditions are also given for weakly convex programming problems, convex maximization problems 
and for fractional programming problems. 
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1. Introduction 

Consider the following general constrained difference convex (DC) global opti- 
mization problem 

(P) global minimize p(z) - f(x) 

subject to gi(z) 6 0, i E I, 

where I is an arbitrary index set and the functions p, f,  gi : JR” + IR, i E I, 
are continuous convex functions. The optimization model problem (P) covers, 
in particular, the standard convex programming problem and convex maximiza- 
tion problems. The model problem appears in various practical applications (see 
[ 12, 13, 193) and in the design of numerical algorithms of several general global 
optimization problems. Many difficult combinatorial problems, such as nonlinear 
integer programming problems [20] and quadratic assignment problems [ 191, and 
various nonconvex minimization problems such as nonlinear fractional program- 
ming problems can be reformulated and solved as constrained difference convex 
minimization problems (P). 

This paper was presented at the Optimization Miniconference held at the University of Baharat, 
Victoria, Australia, on July 14, 1994. 
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A great deal of attention has recently been focused on the techniques of solving 
constrained global optimization problems, based on cutting plane methods, outer 
approximation techniques and branch and bound methods, see [ 12, 191. Howev- 
er, the study of dual conditions characterizing global optimality that is vital for 
any non-convex optimization problem has so far been limited mainly to convex 
maximization problems with linear constraints [8], sublinear constraints [ 1.5, 161 or 
difference sublinear constraints [4,16]. More recently, global optimality conditions 
for fractional programming problems with finitely many convex constraints using 
a generalized Slater regularity condition have been given in Ellala [3]. These dual 
conditions are expressed utilizing &-subdifferentials. From the theoretical and com- 
putational view point, a detailed examination and the development of necessary 
and sufficient conditions for global optimization problems is of great importance, 
see [ 1, 19, 2.51. These conditions can also be used as stopping rules in numerical 
procedures, such as branch and bound methods, for solving global optimization 
problems. 

In this paper, we establish dual conditions characterizing global optimality of 
the model problem (P) . The conditions are given in terms of s-subdifferentials and 
they do not require any regularity hypothesis. An extension of Farkas’ lemma for 
inequality systems involving convex functions allows us to obtain the necessary 
and sufficient dual optimality conditions for the convex inequality constrained 
problem (P). As applications, we also present optimality conditions for problems 
with weakly convex ([24]) objective functions, for convex maximization problems 
and for a class of fractional programming problems. The technical tools used in 
our approach are &-subdifferentials and conjugate functions. 

The outline of the paper is as follows. In the next section, we develop a version 
of Farkas’ lemma for systems involving convex functions, and in Section 3 we 
establish necessary and sufficient optimality conditions for a general global differ- 
ence convex minimization problem with convex constraints. In the appendix, we 
provide a proof of the extended Farkas’ lemma used in Section 3 and related details 
on solvability of convex inequality systems. 

2. .&ubdifferentials and Farkas’ Lemma 

We begin this section by presenting definitions of the Fenchel-Moreau conjugate 
and the &-subdifferential and their relationships. Throughout this paper X shall 
denote a real Banach space. The continuous dual space to X will be denoted by X’ 
and will be endowed with the weak* topology. For a set D c X we shall denote the 
closure and convex hull of D by cl D and co D respectively. The cone generated 
by the set D is denoted cone D := U,>ocrD. The closed convex cone generated 
by D is denoted by cl (cocone D) . 
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Let f : X + R be a continuous convex function. Then the conjugate function 
of f, f* : X’ -+ R U {+oo}, is defined by 

The epigraph of f, epi f, is defined by 

epi f = 
io 

r E X x IRlf(z) <r . 
I 

If h(s) = f(z) - cy, cy E R then it is easy to see that epi h* = epi f* + ( (z) }. For 
E 3 0, the &-subdifferential of f at a E X, 8, f(a), is given by 

&f(a) = (7J E x’p2 E X)f (Lx) - f(u) 3 v(z - u) - E}. 

Then, E-subdifferential is a non-empty convex weak* closed subset of X’. More- 
over, 

n a,f (u) = af (4: 
E>O 

the latter set denoting the usual convex subdifferential of f at a. For a detailed 
discussion of E-subdifferentials and conjugate functions, see Hiriart-Urruty and 
Lemarechal [lo], see also [21, 2.51. 

If f is sublinear (i.e. convex and positively homogeneous of degree one) then 
&f (0) = af 6% f or every E 3 0, and epi f * = t3f (0) x IR+ . For a closed subset 
C of X, and E 3 0, the E-normal set of C at a .E X, denoted by N,(u, C), is given 

bY 

N,(u,C) = {w E X’I(V’z E C)W(Z - u) < &}. 

Note that E-normal set of C at a is the E-subdifferential of the indicator function 
6(zlC) at a, where 

WC) = { 0, &feFwZe 

The following lemma shows how the E-subdifferential of f is related to epi f *. 

LEMMA 2.1. If f : X + B is a continuous convexfunction and if a E X then 

epif* = U 
&a0 ii E+w(u?;-f(a) 

)!w E &rid} 
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Proof. Let (p) E epif”. Then, f*(u) < r. From the definition of conjugate 
function, for each 2 E X, 

f”(u) 3 44 - f(4; 

thus, for each x E X,u(x) - f(x) < r. Let Eo = r + f(a) - U(a) 3 0. So, 
r = EO - f(a) + u(u). Now, for each 2 E X, 

f(x) - f(a) 3 u(x) - r - f(a) = u(x - a) - Eo; 

thus, u E &f(u). Hence, 

Conversely, let (y) E K. Then, there exists EO 3 0 such that u E a,, f (a) and 
r = -f(u) + U(U) + ~0. Therefore, 

f*(u) + f(a) - 44 < co, 

and so, 

f*(u) < 80 + u(u) - f(u) = r; 

and the proof is completed. 0 

From Lemma 2.1, we see that if f : X -+ R is a continuous convex function 
then 

epif* = U &f(O) x {E - f(O)}. 
E>O 

If, in particular, f is a continuous sublinear function then 

epif* = af(O) x R+, 

where R+ is the set of non-negative real numbers. If h(x) = f(x) - k, k E R then 
epi h* = W(O) x [k 4. 

We now state a version of Farkas’ lemma that provides a dual characterization 
of solvability for convex inequality systems. Such a form of Farkas’ lemma can 
be deduced from the results of Ha [6] and Gwinner [5]. Moreover, an elegant 
framework for dual characterizations of solvability of general infinite nonlinear 
inequality systems, including convex systems, has been recently given in Rubinov, 
Glover and Jeyakumar [22]. However, for completeness we provide a new direct 
proof of this result in the Appendix along with a consistency result for convex 
inequality systems. 
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THEOREM 2.1. Let I be an arbitrary index set; let f, g; : X -+ R, i E I be 
continuous convex functions. Suppose that the system 

i E I, g&4 < 0, 

is consistent. Then 

Vi E I, L&(z) < 0 - f(x) < 0. 

if and only if 

epi f* C cl 
i 

cocone U epi g,’ . 
iCI i 

Proof. See the appendix for details. q 

COROLLARY 2.1. Let I be an arbitrary index set, let for each i E I, f, g2 : 
X + IR be continuous convex$mctions and let y E R Suppose that the system 

i E I, g&c> < 0 

is consistent. Then, the following statements are equivalent 

Vi E I, g&) < 0 = f(z) < y (1) 

v’s 2 0, i?hf(O) x {S + y - f(O)} C cl cocone U epigi* . (2) 
iEI 

Proof. Let h(z) = f(z) - y. Then, h( ) . z 1s a continuous convex function and 
the statement (1) is equivalent, by Theorem 2.1, to 

epi h* C cl cocone U epi g,* . 
iEI 

Now by Lemma 2.1, 

Thus (1) is equivalent to 

U asf(0) x (6 + 7 - f(O)} C cl cocone U epid . 0 
620 iEI 

COROLLARY 2.2. Let I be an arbitrary index set; let, for each i E I: f, gi + R 
be continuous convexfinctions. Suppose that the system 
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is consistent. Then, the following statements are equivalent 

vi E I, Si(X) < 0 - f(x) < f(O) 

(VS 2 0) (Vu E abf(O)) (a, S) E cE 
( 

cocone U epi g: . 
) ?EI 

(3) 

(4) 

Proof. The conclusion follows easily from Theorem 2.1 by taking y = f(0) 
and noting that the statement (2) now reduces to 

U &f(O) x (6) C cl cocone U epig,* . q 
620 zEI 

It is worth observing that if f is sublinear then we get 

Vi E I, g&)<O=f(+O 

if and only if 

af(O) x IF+ C cl 
i 

cocone U epigt . 
&I i 

Note that Corollary 2.2 extends also the classical infinite dimensional Farkas’ 
lemma given for cones. To see this let S c Y be a closed convex cone with dual 
cone S” = {V E X’ : (VZ E S)V(Z) 3 0); let A : X + Y be a continuous linear 
mapping. Then, Ax E -5’ if and only if, for each X E S*, XAz < 0. Hence, for 
v E X’, we have [Aa: E -S a V(Z) 6 0] if and only if 

{w} x JR+ c cl 
( 

cocone u {ATA} x R+ 

i 

= clAT(S*) x IR+; 
xcss* 

We wish also to point out that versions of Farkas’ lemma for sublinear, i.e. 
convex and positively homogeneous functions, have recently been obtained com- 
pletely in terms of subdifferentials (see [4]). However, it can be shown that similar 
versions completely in terms of subdifferentials do not extend to convex functions. 
We have established in this section extensions using &-subdifferentials. 

3. DC Minimization with Convex Constraints 

In this section, we are concerned with applications of the generalized Farkas’ 
lemma to obtain a complete characterization of optimality for global optimization 
problems with convex constraints. 

Consider again the problem 

(P) global minimize p(x) - f(x) 

subject to gi(z) < 0, i E I, 
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where X is a Banach space, 1 is an arbitrary index set and p, f, gi : X + R, i E I, 
are continuous convex functions. Many difficult global optimization problems can 
be reformulated and solved as difference convex minimization problems. Most of 
the constrained optimization problems studied in the literature of global optimiza- 
tion deal with finitely many linear constraints. Here we examine a general model 
problem (P) with explicit convex inequality constraints. Moreover, the number of 
constraints is not restricted to be finite. 

Before presenting optimality conditions that characterize the global optimum 
of our model problem (P), let us look at how the E-normal set of the set, described 
by a system of infinite convex inequalities, can be characterized in terms of E- 
subdifferentials. This will play a crucial role in the development of optimality 
conditions for constrained optimization problems. In [lo] such a characterization 
is given for the set which is described by finitely many linear inequalities. 

THEOREM 3.1. Let gi : X + R, i E I, be continuous convex$mctions. Let 

c = {z E xpi E I)g&) < 0); 

let a E C and e 3 0. Then u E N,(a, C) ifand only if 

Proof, Note that TJ E ‘NE(a, C) if and only if 

Vi E I g?(z) < 0 ==+ w(x) < w(a) + E. 

From Theorem 2.1, we get 

It is worthwhile noting that the above characterization of the E-normal set in 
terms of approximate subdifferentials did not require any regularity condition. 
In Hiriart-Urruty and Lemarechal (see [lo, p. 1271 and Ellala [3]), the general- 
ized Slater condition was used to establish such a characterization for problems 
involving $niteZy many constraints. This approach uses the characterization of 
approximate optimality, i.e. &-optimality of convex programming problems (see 
also [25]). 

THEOREM 3.2. Let p, f, gi : X + R, i E I, be continuous convex functions and 
let a be a feasible point of (I’). Then, a is a global minimum for (P) if and only if 

(YE 3 O)(vu E &f(a)>W < Y < E, u E a+(a) 
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( 

v-u 

w(u) - u(u) + E - y ) 

E cl U, cocone (y+ ui(u) - gi(u) ui E adu) 

520 
)i 1) 

* 

Proof. The point a is a global minimum of (P) if and only if a is a global 
minimum of the unconstrained problem 

global minimize p(x) + S(zlC) - f(x) 

subject to z E X. 

Now from a result of Hiriart-Urruty [8, 91 (see also [23]), a is a global minimum 
of the preceding unconstrained problem if and only if for each E 2 0. 

W(4 c UP + ~WW). 

Since the function p(z) + S(Z\C) is finite at a and f is continuous, 

The conclusion then follows (with y = ~2) from Theorem 3.1 by noting that 
2, E IV, (a, C) if and only if 

As immediate applications of Theorem 3.1 we include the following: 

3.1. WEAKLYCONVEXPROGRAMMING 

We now see how global optimality of a weakly convex program [24] can be 
characterized. Let us first recall that a continuous function h(z) is weakly convex 
if it can be written as h(z) = p(2) - $11~11” f or some continuous convex function 
p and p 3 0. Consider the following weakly convex program 

(WC) global minimize p(x) - ii/~ll’ 

subject to gi(x) < 0, i E I, 

where p > 0. 
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THEOREM 3.3. Letp, gi : X + B, i E I, be continuous convex functions and let 
a be a feasible point of (WC). Then, a is a global minimum for (WC) if and only if 
for each 6 2 0 and for each v E X’ with v = pw and fi[lw - a j 1 < 4% there 
exist 0 f y < E and u E 6$(a) satisfying 

v-u 

v(u) - u(a) + E - y 

Proof. The proof follows from the previous result by taking f(x) as 5 112 iI2 and 
by noting that 

3.2. CONVEXPROGRAMMING 

We shall briefly consider the special case of (P) in which f E 0. In this case, the 
problem (P) becomes the standard convex programming problem with infinitely 
many constraints [17, 181. 

(CP) minimize p(z) 

subject to g1 (x) < 0, i E 1. 

For this problem, Theorem 3.3 with p = 0 provides a characterization of 
optimality without constraint qualification for the convex programming problem 
(CP). The optimality condition becomes the following: 

( -U 

-u(u) + E - y 
1 

E cl 

t 

cocone U 

zEI i( 
6+u,(;)Lgi(a) 

)I i) 
ui E @da) * 

620 

It is not difficult to show that this condition is equivalent to the existence of 
u E +(a) satisfying 
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3.3. CONVEXGLOBALMAXIMIZATION 

We now focus on the convex maximization problem 

(MP) maximize f(z) 
subject to gi(z) 6 0, i E 1: 

where f, gt : X + R, i E I, are continuous convex functions. The following 
result illustrates the relationship between the value of the problem (MP) and the 
dual optimality conditions. 

THEOREM 3.4. Let f, g;, i E I be continuous convexfunctions, let a be a feasible 
point and let ,B E R. Then 

SUP{f(4ls7i(4 G 0, i E I> G P (5) 

if and only iffor each E 3 0 and for each u E 8, f(u) 

(6) 

Proof. The statement (5) is equivalent to the implication that 

Vi E I,g?(zc> G 0 ==+ f(x) < P. (7) 

The conclusion follows by applying the solvability result, Theorem 2.1, replacing 
f(s) by f(z) - p and by using Lemma 2.1. 0 

The characterization of the global maximum of (IMP) is easily obtained from the 
above result as follows. 

COROLLARY 3.1. For the problem (MP), assume that f and for each i E I, g7, 
are continuous convexfunctions and that a E X is a feasible point. Then, a is a 
global maximum of (MP) ifand only iffor each E 2 0 and v E 3, f(u), 



CHARACTERIZING GLOBAL OPTIMALITY 181 

Proof. Since the problem (MP) attains its maximum at a, 

sup{f(z)Igi(z) < O,i E I> = f(a) = P. 

Hence, the optimality conditions follow from (6) by substituting f(a) for ,B. q 

Note that Corollary 3.1 can also be derived as a special case of Theorem 3.2 or as 
an application of Theorem 3.2 in [7]. We provide a simple example (see [ 151) to 
illustrate the nature of the conditions in Corollary 3.1. 

EXAMPLE 3.1. Consider the following simple problem. 

Maximize f(z) subject to 0 < z < 1, 

where f : R + R is the polyhedral convex function defined by f(x) = 0, for 
2 < 0, Z, for 2 E (0,l) and 2~ - 1 for zc 3 1. Clearly the global maximum occurs 
at IC = 1 and &f(l) = [max{l - ~,0},2]. Note that &f(l) = a,f(l) for all 
E > E = 1 (see [S]). The conclusion of Corollary 3.1 is easily shown to be satisfied 
since for each E > 0 and v E &f(l), 

(w, w  + E) E {(x, y) E R2 : II: < y}. 

3.4. FRACTIONALPROGRAMMING 

Consider now the following constrained fractional programming problem, studied 
in Ellala [3] 

P(X) (PP) global minimize - 
f(x) 

subject to gi(x) < 0, i E I, 

where p, f, gi : X -+ R, i E I are continuous convex functions with f(z) > 0 and 
p(x) 2 0 on the feasible set. 

THEOREM 3.5. For the problem (FP), assume that a is a feasible point. Then, a 
is a global minimum for (FP) if and only if 

( 
2, - fb>w 

44 - fk+w + E - Y i 

E cl 

i 

cocone U 
?EZ K cs+ui(:;-gi(a) 1 
620 
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Proof. Since f(x) > 0 and p(z) 3 0 on the feasible set of (FP), the point a is 
a global minimum of (FP) if and only if it is a global minimum of the following 
difference convex minimization problem 

global minimize f(a)p(z) - p(a)f(z) 

subject to gi(z) < 0, i E I, 

The conclusion then follows from Theorem 3.2 by noting that f(a) > 0 and 

Note that if p(a) > 0 then the above optimality condition can be simplified as 
follows: 

( 
Pk+ - mw 

P(+44 - fk+J(4 + 6 - Y ) 

E cl 

l 

cocone U 
&I ii bfui(;-g&) 
620 

)I ,) 
uz E &s&) . 

4. Conclusions and Further Research 

In this paper, we have shown how global optimality of certain difficult nonconvex 
optimization problems with convex inequality constraints can be characterized 
using E-subdifferentials. Our results do not assume any regularity condition (or 
constraint qualification) and provide asymptotic necessary and sufficient optimality 
conditions. Such dual conditions completely characterizing optimality for infinite 
convex programming problems using E-subdifferentials were given recently in 
[ 141. A constraint qualification is generally assumed to obtain necessary optimality 
conditions for convex programming problems, see [18, lo]. We have shown that 
by presenting the conditions in asymptotic form and by using &-subdifferentials the 
standard constraint qualification can be dropped, this is true even for certain non- 
convex problems involving convex inequality constraints. It would be interesting 
to know under what conditions these asymptotic optimality conditions collapse to 
a Lagrangian type condition or to a non-asymptotic form. 

We developed these optimality results by first studying solvability characteri- 
zations of convex inequality systems, such as generalized Farkas’ lemma, and then 
applied these results to appropriate global optimization problems. This approach to 
studying constrained global optimization suggests interesting research questions. 
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For instance, in many practical optimization problems not only is the objective 
function difference convex but also certain constraints are also of this type such as 
the convex optimization problems with a reverse convex constraint studied in [ 131. 
We can provide dual descriptions of global optimality for such problems if charac- 
terizations of solvability of appropriate inequality systems are known. Hence, the 
following questions arise. Can we establish complete dual characterizations for the 
solvability of the following inequality system? 

where f, gi and hi are continuous convex functions. If so, do such characterizations 
have non-asymptotic forms under regularity conditions? These questions are worth 
investigating as the answers would allow applications to a wide class of nonconvex 
global optimization problems. 

5. Appendix - Solvability of Convex Inequality Systems 

In this section we will provide a proof of Theorem 2.1. To facilitate the argument we 
shall break the proof into a number of preliminary lemmas. It should be noted that 
these preliminary results are interesting in their own right as we shall demonstrate 
with a simple application of Lemma 4.1 to characterizing consistency of convex 
inequality systems. 

LEMMA 5.1. Let f : X -+ R U {+oo} be kc. and convex. Then the following 
statements are equivalent: 

(i) 3~ E X, f(z) 6 0, 
(ii) (0, -1) @ cl cone epi f*. 

Proof. Suppose that (ii) is valid, then by the separation theorem there is a 
(z, a) E X x R such that 

-a < 0, (V(u, y) E A)+) + ycu > 0 

where A = cZ(cone epi f*). Let 5 = z/a, so that 

(V(u,r) E A)u(z) + Y 3 0. 

Thus, for any u E dom f*, 

u(z) + f”(u) 3 0 

* u(-3) - f*(u) < 0. 

Hence, f(-5) = sup,[~(--5) - f*(u)] 6 0, an so 1 is valid. Thus (ii) implies d (‘) 
(0. 

Suppose that (ii) is not valid. Then there are nets (,@) and (E?) in R with 
,@ > 0, (ui) c domf* and, for all i, (ui, pi) E epi f* such that piui + 0 and 
/3i&i + - 1. Thus, for convenience, we can assume E, < 0 for all i. It follows that 
&i 2 f*(ui) for all i. 
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Take any x E dom f, then, for any i: 

f(x) = suPJ+) - f*wl 
3 w(x) - f*(ui) 
3 Ui(X) - Ei. 

In particular, it follows that, 

Pi.+) 2 P&*(X) - P&i. 

However, ,D*ui(z) - ,&E? + 1, thus it follows that f(z) > 0 and so (i) cannot be 
satisfied. 0 

LEMMA 5.2. Let f : X -+ RU {+a} b e I .s.c. and convexand let and D = (x E 
X If(z) < 0} be nonempty Then, 

(-D x {l})* = cZ(coneepif*). 
Proof. Let (u, CY) E epi f* then f*(u) < CC. Let x E D, then 

u(x) - a < u(x) - f”(u) 

G sup&(x) - f*(u)) 

= f(x) 
< 0. 

Thus, for each x E D, (u, a)(-~, 1) 3 0. Hence (u, a) E (-D x {l})* and so 
epif* C (-D x {l})*. Thus 

cZ(coneepif*) C (-D X {l})*. 

To establish the reverse inclusion, we use the separation theorem. Suppose that 
(u, a) c$ A where A = I( c cone epi f*). Since D is nonempty we have, by Lemma 
5.1, that (0, -1) # A. Then the entire line segment connecting the points (u, cy) 
and (0, - 1) is not in A. We now apply the separation theorem [ 1 l] to the compact 
convex set consisting of the line segment joining these points and the closed convex 
cone A. Thus there is a point (x, 0) such that, for all 6 E [0, 11: 

[J(u, 4 + (1 - w, -1)l(wJ> < 0, (8) 
and 

v(x) + rP 3 0, ‘v”(~, Y) E A. (9) 

By letting S = 0 in (8) it follows that p > 0 and letting S = 1 gives u(x//3) +cr < 0. 
Let x’ = x/,8 then we have u(-x’) > cr. Now for any v E dom f*, (v, f*(w)) E A 
in (9) and we find that 
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2)(x’) + f*(w) 3 0 
===+ w(-x’) - f*(w) < 0 
) sup,{v(-z’) - f*(v)} < 0 

===+ f(-2’) < 0. 

Thus x’ E -D and (u, o) # (-D x {l})*. Thus the result is established. q 

Note that the conclusion of Lemma 5.2 shows also that the following statements 
are equivalent: 

(i) f(x) < 0 * U(X) 6 cu. 
(ii) (u, 13) E cZ(cone epi f*), 

where u E X’ and cy E R. This is another simple form of Farkas’ lemma involving 
a convex function. Observe that if for each i E I, gi is a 1.s.c. convex function and 
if g = sup;g;, then 

epig* = cl (c0iepigT) . 

We are now ready to present the proof of Theorem 2.1 using Lemmas 5.1 and 
5.2. For convenience, we restate Theorem 2.1 here. 

THEOREM 5.1. Let f and, for each i E I, gi be kc. convexfunctions. Assume 
that {x E Xlgi(x) < 0,Vi E I} is nonempty. Then the following are equivalent: 

(i) Vi E I, g%(x) 6 0 3 f(x) 6 0 
(ii) epi f* c cE (cocone UiCI epi gi*) , 

Proof. Let g = sup,gi and D = {x E X\g(x) 6 0}, then (i) is equivalent to: 

[9(4 G 0 ===+ f(x) G 01 
==3 [g(x) < 0 ===s u(x) < a] V(u, a) E epi f* 

==+ (V(u,a) E epif*)(u,cr) E (-D x {l})* (10) 
a epif* C (-D x {l})* (11) 

Note that (10) follows by the definition of a dual cone and (11) is equivalent to (ii) 
follows since D is nonempty (by assumption) using Lemma 5.2. q 

We can deduce the following consistency result for convex inequality systems 
using Lemma 5.1. 

THEOREM 5.2. For each i E I let g, be 1.s.c. and convex. Then exactly one of the 
following statements holds. 

(i) (3x E X)(Vi E I)gi(x) < 0 
(ii) (0, - 1) E cl (cocone IJig epi gi*). 
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Proof. Let g = supi gi. Then, the conclusion follows by applying Lemma 5.1 
and by noting that 

epig” = cl (coiepig:) . 
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